文章编号:1000-324X(2022)12-1329-08

DOI: 10.15541/jim20220166

磁性 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ Z 型异质结的 制备及光催化降解性能

陈士昆, 王楚楚, 陈 晔, 李 莉, 潘 路, 文桂林

(淮南师范学院 化学与材料工程学院,淮南 232038)

摘要:光催化降解水体中的有机污染物具有广阔的应用前景。本研究以CoFe_{1.95}Sm_{0.05}O₄ 作为载体,通过原位沉积 法和光还原法制备了 Z 型异质结 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄,采用不同表征手段对样品的微观形貌、物相结构、光 学和磁学性能进行表征分析。Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 复合物催化活性最高,其光催化降解动力学常数(*k*)分别是 Ag₂S/Ag, Ag₂S 和 CoFe_{1.95}Sm_{0.05}O₄ 的 2.96, 3.71 和 8.24 倍。引入 CoFe_{1.95}Sm_{0.05}O₄ 可以有效地促进 Ag₂S/Ag 中光生 载流子的分离效率。•O₂⁻和 •OH⁻是光催化过程中的主要活性物。此外,在光催化反应后,外加磁场可以将制备的 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 复合材料快速从溶液中分离出来。循环降解实验显示,Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 复合材料 在光降解过程中具有稳定的降解能力和晶体结构。本研究为进一步开发高效、窄带隙和磁性的光催化剂提供了有 效的解决思路。

关 键 词: Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄; Z 型异质结; 光催化降解; 回收

中图分类号: TB333 文献标志码: A

Magnetic Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ Z-scheme Heterojunction: Preparation and Its Photocatalytic Degradation Property

CHEN Shikun, WANG Chuchu, CHEN Ye, LI Li, PAN Lu, WEN Guilin

(School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China)

Abstract: Photocatalytic degradation of organic pollutants from water bodies can efficiently reduce the organic pollutants in wastewater, which has broad application prospects. In this study, using $CoFe_{1.95}Sm_{0.05}O_4$ as a support, the Z-scheme heterojunction $Ag_2S/Ag/CoFe_{1.95}Sm_{0.05}O_4$ was synthesized through a facile *in situ* deposition method followed by photo-reduction. Microstructure, phase structure, optical and magnetic properties of the samples were analyzed. $Ag_2S/Ag/CoFe_{1.95}Sm_{0.05}O_4$ composite exhibited the highest catalytic activity, which dynamic constant (*k*) was 1.96, 2.71 and 7.24 times higher than those of Ag_2S/Ag , Ag_2S and $CoFe_{1.95}Sm_{0.05}O_4$, respectively. Introduction of $CoFe_{1.95}Sm_{0.05}O_4$ could efficiently promote the separation efficiency of photogenerated charge carriers in Ag_2S/Ag . And $\bullet O_2^-$ and $\bullet OH^-$ were proved to be the main active substances in the photocatalytic process. In addition, the as-prepared $Ag_2S/Ag/CoFe_{1.95}Sm_{0.05}O_4$ composite could be quickly separated from the solution by an extra magnetic field after the photocatalytic reaction. Cyclic photodegradation test showed that the

作者简介: 陈士昆(1965–), 男, 教授. E-mail: chshk3478@163.com CHEN Shikun (1965–), male, professor. E-mail: chshk3478@163.com

收稿日期: 2022-03-23; 收到修改稿日期: 2022-07-04; 网络出版日期: 2022-07-08

基金项目:国家自然科学基金(21301062); 安徽省自然科学基金(1808085ME109); 安徽省高校自然科学基金重点项目 (KJ2019A0691)

National Natural Science Foundation of China (21301062); Natural Science Foundation of Anhui Province (1808085ME109); Key Project of Natural Science Foundation of Anhui Universities (KJ2019A0691)

 $Ag_2S/Ag/CoFe_{1.95}Sm_{0.05}O_4$ hybrid materials had the stable degradation ability and crystal structures in the photodegradation process. This research provides a useful approach to develop photocatalysts with high efficiency, narrow band gap and magnetism.

Key words: Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄; Z-scheme heterojunction; photocatalytic degradation; recycling

化学染料废水排放到环境中会污染生活环境, 破坏生态平衡,因此开发高效的废水处理技术和具 有高催化活性且易回收的光催化剂极为迫切,其中 半导体光催化氧化是最有前途的光催化技术^[1-3]。

MFe₂O₄是一种典型的窄带隙、无毒和有磁性的 光催化材料, 掺杂稀土元素可以提高 MFe₂O₄ 饱和 磁化强度并拓宽其可见光响应的范围^[4-5]。Ag₃PO₄^[6] 和 Ag₂S^[7-8]等催化剂具有很高的光催化活性, 尤其 当 Ag₂S 与 Ag 耦合, Ag 表面等离子体共振及其形成 的异质结协同效应又能解决光腐蚀问题^[9-10]。尽管 如此, 单一的 CoRE_xFe_{1-x}O₄ 或 Ag₂S/Ag 的光催化活 性仍然有待提高,光生载流子易发生复合、成本高 且难回收等问题又限制了其应用。因此, 研究者一 般通过负载改性来提高催化剂的催化活性,铁氧体 MFe₂O₄(MFe_{1-x}RE_xO₄)有较大的磁性及良好的分散 性, 是一种理想的负载基底, 与其它半导体耦合可 以有效提高 MFe1-xRExO4 的光催化活性和光生电子--空穴对的分离效率,如 α-Fe₂O₃/ZnFe₂O₄^[11], $CoFe_2O_4-Ag_2O^{[12-13]}$. $CoFe_2O_4/Ag_2O/Ag_2CO_3^{[14]}$ CoFe₂O₄/Ag₃PO₄^[15], CdS/CoFe₂O₄^[16]等。但是传统异 质结存在氧化--还原能力弱、电荷转移速率慢等不足[17]。 贵金属表面等离子体的共振能量传递可以提高金属 增强光催化的能力、CdS-Cu-TiO2和 Ag/AgCl/CoFe2O4 等在降解有机污染物方面取得了良好效果^[18-20]。利 用磁性铁氧体 MFe1--RErO4 纳米粒子为载体,设计 合成高效可循环 Z 型异质结光催化剂用于废水处理, 将是一条不错的设计路线[21]。

本工作以 CoFe_{1.95}Sm_{0.05}O₄ 作为载体,负载 Ag₂S/Ag,构建设计合成了磁性核-壳结构 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 复合光催化剂,并考察了 其光催化活性和回收,以甲基橙(MO)为有机污染物 考察其可见光催化活性及增强光催化活性的机理。

1 实验方法

1.1 材料和试剂

九水合硝酸铁(Fe(NO₃)₃·9H₂O)、六水合硝酸钴 (Co(NO₃)₂·6H₂O)、硝酸银(AgNO₃)、九水合硫化钠 (Na₂S·9H₂O)、浓氨水、无水乙醇、一水柠檬酸 (C₆H₈O₇·H₂O)、六水合硝酸钐 (Sm(NO₃)₃·6H₂O)、 甲基橙(C₁₄H₁₄N₃SO₃Na)、硫酸钡(BaSO₄)、盐酸、 过氧化氢均购于中国医药集团化学试剂有限公司,所 用试剂均为分析纯,使用的溶液均用去离子水配制。

1.2 样品的制备

Ag₂S/Ag 的制备: 将含有 0.6005 g Na₂S·9H₂O 的溶液置于圆底烧瓶中,采用恒压滴液漏斗缓慢滴加 含有 0.8494 g AgNO₃ 的溶液, 500 W 氙灯光照 10 min, 持续搅拌 30 min, 洗涤过滤, 将样品置于 100 ℃恒 温干燥箱内保温 3 h, 然后冷却到室温, 制得黑色样品 Ag₂S/Ag。

Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄的制备: 首先, 按文 献[22]制备CoFe1.95Sm0.05O4, 取0.5211gCo(NO3)2·6H2O、 1.4106 g Fe(NO₃)₃·9H₂O₅ 0.0398 g Sm(NO₃)₃·6H₂O₅ 1.1289 g C₆H₈O₇·H₂O 置于圆底烧瓶中, 加入 20 mL 去离子水,80 ℃恒温磁力搅拌1h,缓慢匀速滴加氨 水,调节 pH 为 6~7,并在 100 ℃恒温 24 h 左右得到 干凝胶, 再以5 ℃/min 的速率升温到 700 ℃并保温 4 h, 冷却至室温, 即得目标产品。取 0.5000 g 制备 的 CoFe1.95 Sm0.05 O4 置于圆底烧瓶中, 加入 30 mL 水, 超声分散 10 min; 随后将含有 0.9423 g Na₂S·9H₂O 的 溶液加入 CoFe1 95 Sm0 05 O4 悬浊液,磁力搅拌 30 min, 将含AgNO3的溶液(1.6391gAgNO3)缓缓滴入上述 混合溶液中, 氙灯(500 W)光照 10 min 后, 继续搅 拌 30 min, 洗涤过滤; 得到的沉淀物先在 103 ℃ 下干燥 24 h, 然后以 2.5 ℃/min 的升温速率升温至 400 ℃并保温 2 h, 随后冷却至室温, 即得黑色粉 末样品[23]。

1.3 分析表征

采用 DX-2800 衍射仪(XRD)测量样品的晶体结 构, CuKa (λ =0.154056 nm), 扫描范围为 2 θ =10°~80°;采 用 UV-3700 紫外可见分光光度测定样品的漫反射 光谱, 以 BaSO₄ 作为标准白板; 采用透射电子显微 镜的能谱仪(EDS)测定 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 的 组成; 采用 JEOL-JSM2010 型高分辨透射电子显微 镜(HRTEM)观察样品的微观形貌和和核壳结构; 采 用 BHV-55 型磁强计测定变化的磁场作用下材料的 磁性能,最大作用范围为±2 T。采用 CHI660E 型三 电极电化学工作站测定平带电势, Ag/AgCl 电极、铂 片和 ITO 分别作为参比电极、对电极和工作电极, 0.5 mol·L⁻¹ 的 Na₂SO₄ 溶液作为电解液, 电位范围 -1.0~1.0 V。采用 Thermo Scientific K-Alpha 型 X 射线光电子能谱仪(XPS)检测样品化学组成和元素 价态,以污染碳 C1s 峰(284.6 eV)校正荷电位移。在 上海争巧光化学反应仪 ZQ-GHX-V 成套设备上进 行光催化反应。

1.4 光催化评价

取 50 mg 催化剂加入 50 mL(1.0×10⁻⁵ mol·L⁻¹) 甲基橙溶液中,置于光催化反应仪中,避光条件下 搅拌 60 min,达到催化剂与污染物的吸附平衡。采 用两种实验方案评价光催化性能:方案一,用盐酸 调节溶液 pH 为 4.0;方案二,为了进一步提高催化 剂的光催化效果,用盐酸调节溶液 pH 为 4.0,并滴 入 5 滴 3% H₂O₂ 来引发反应。以 500 W 氙灯作为 光源照射甲基橙溶液,每隔 20 min 取样 10 mL,利 用紫外-可见分光光度计在最大吸收波长 499 nm 处 测量其吸光度。

2 结果与讨论

2.1 样品物相和结构分析

图 1(a)为不同样品的 XRD 图谱。样品 Ag₂S 在 2*θ*=26.3°, 28.9°, 31.5°, 34.4°, 36.8°, 40.7°, 43.4°和 53.3°处出现 8 个明显的衍射峰, 分别与 Ag₂S(JCPDS 14-0072)的(012), (111), (112), (121), (031), (200)和(213)晶面相匹配^[24]。Ag₂S/Ag 衍射峰与 Ag₂S 相似, 值得注意的是, 在 2*θ*=38.12°, 44.30°和 64.4° 等处出现了 3 个衍射峰, 分别对应于金属 Ag⁰ (JCPDS 04-0783)的(111), (200)和(220)晶面^[25]。 CoFe_{1.95}Sm_{0.05}O₄ 在 2*θ*=30.4°, 35.7°, 37.4°, 43.4°, 53.8°, 57.3°和 62.8°等处出现的衍射峰, 分别对应于 CoFe₂O₄ (JCPDS 22-1086)的(220), (311), (222), (400), (422), (511)和(440)晶面^[26], 可见 CoFe_{1.95}Sm_{0.05}O₄ 具有 与 CoFe₂O₄相同的晶型结构。在 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 复合材料中, Ag₂S 的所有特征峰都没有移动, 说明 引入 CoFe_{1.95}Sm_{0.05}O₄并没有改变 Ag₂S 的晶体结构; 此 外, 在 2*θ*=38.12°处出现了 Ag⁰的衍射峰, 而且 Ag₂S/Ag/ CoFe_{1.95}Sm_{0.05}O₄衍射峰强度比 CoFe_{1.95}Sm_{0.05}O₄弱, 没有 出 现 其 它 杂 质 衍 射 峰 。 由 样 品 Ag₂S/Ag/ CoFe_{1.95}Sm_{0.05}O₄的 EDS 能谱图(图 1(b))可见, 该 样品是由 O、S、Ag、Co、Sm 和 Fe 元素组成(Au 元素来自导电胶和喷镀)。

2.2 样品形貌分析

由图 2(a)可见,较大的颗粒为 Ag₂S/Ag,团聚的 纳米颗粒为 CoFe_{1.95}Sm_{0.05}O₄, Ag₂S/Ag 颗粒表面被 团聚的纳米颗粒包覆。从图 2 (b)还可以看出,Ag 颗 粒作为核被 Ag₂S 粒子所包裹,没有被 Ag₂S 粒子包 裹的部分与 CoFe_{1.95}Sm_{0.05}O₄ 密切接触。如图 2 (c) 所示,通过高分辨透射电镜观察到亮区和暗区非常 明显,暗区中晶格间距为 0.1562 nm,对应 CoSm_{0.05}Fe_{1.95}O₄ 的(311)晶面;亮区晶格间距为 0.3721 nm,对应单斜 Ag₂S 的(112)晶面;而灰暗区 中晶格间距为 0.2363 nm,对应面心立方 Ag 的(111) 晶面,表明 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 形成了 Z 型异 质结。

2.3 光电子能谱分析

由样品的 XPS 全谱图(图 3(a))可知, Ag₂S/Ag/ CoFe_{1.95}Sm_{0.05}O₄ 由 S、Sm、Ag、O、Co、Fe 等六 种元素构成(其中 C 元素来自碳污染)。如图 3(b)所 示,结合能位于 368.20 和 374.19 eV 处有一组较强 的谱峰,分别对应于金属 Ag 单质的 3d_{5/2} 和 3d_{3/2} 特 征峰,说明样品中含有金属 Ag;结合能位于 368.30 和 374.30 eV 处的谱峰,分别归属于 Ag⁺3d_{5/2} 和

图 1 不同样品的 XRD 谱图(a)和 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 的 EDS 能谱图(b) Fig. 1 XRD patterns of different samples (a) and EDS pattern of Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄(b)

Ag3d_{3/2} 自旋-轨道分裂峰。161.40 和 162.59 eV 处谱 峰被标定为 Ag₂S 的 S2p 特征峰(如图 3(c)所示),说 明 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 样品中含有 Ag 和 Ag₂S^[27]。图 3(d)中的高分辨率 XPS 光谱显示了四个峰, 结合能 779.58 eV(卫星峰为 786.13 eV)和 795.31 eV(卫 星峰为 802.22 eV)分别对应 Co2p_{3/2}和 Co2p_{1/2}特征 峰。图 3(e)中位于 710.46 和 724.50 eV 处谱峰分别 对应于 Fe2p_{3/2}和 Fe2p_{1/2}峰, 718.90 eV 处谱峰归属 于 Fe³⁺卫星峰,表明配合物中 Fe 的价态为 Fe^{3+[28]}。 图 3(f)中位于 1083.30 和 1110.41 eV 处谱峰归属于 Sm3d_{5/2}峰^[29]。O1s 在结合能 529.71 和 532.6 eV 处 形成的两个峰(图 3(g)),分别对应于 CoFe_{1.95}Sm_{0.05}O₄ 的晶格氧及表面吸附氧。在 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 复合材料中的 S2p 两个峰分别移动到 161.60 和 162.90 eV, Co的Co2p_{3/2}和Co2p_{1/2}峰分别移动到780.58 和796.40 eV, S2p和Co2p特征峰的位移表明,引入 CoFe_{1.95}Sm_{0.05}O₄后Ag₂S/Ag复合材料的化学环境发 生了改变,证实CoFe_{1.95}Sm_{0.05}O₄与Ag₂S/Ag之间存 在强烈的相互作用^[30]。上述表征结果表明, Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄已形成Z型异质结。

2.4 样品的光电性能分析

如图 4(a)所示, CoFe_{1.95}Sm_{0.05}O₄是黑色物质, 在 可见光范围内具有显著的吸收。Ag₂S 在紫外--可见 光区都有较强的吸收, 而 Ag₂S/Ag 在波长 300~900 nm 范围内比 Ag₂S 有更强的吸收, 这主要是金属 Ag 等 离子体共振效应所致^[31]。Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 的光吸附作用最强和光响应范围最广, 主要是由于 加入的黑色 CoFe_{1.95}Sm_{0.05}O₄ 可以吸收更多的能量, 并且 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄异质结也有利于提高 载流子的分离效率^[32]。根据(*ahv*)²与吸收光能量(*hv*) 的关系,可以计算 Ag₂S 和 CoFe_{1.95}Sm_{0.05}O₄禁带宽 度分别为 1.68、0.77 eV(图 4(b))^[33]。

2.5 光催化性能

如图 5 所示, 无论是否加入 H₂O₂, 在没有催化 剂的情况下, 甲基橙水溶液的光降解作用几乎可以 忽略不计, 说明甲基橙在可见光照射下是稳定的。光催化 实验方案一的结果见图 5(a), 可见光照 120 min 后, Ag₂S、 Ag₂S/Ag、CoFe_{1.95}Sm_{0.05}O₄ 和 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 对甲基橙水溶液的降解率分别为 72.77%、72.85%、 19.03%、78.35%; 光催化实验方案二的结果见图 5(c),

可见光照 120 min 后, Ag₂S、Ag₂S/Ag、CoFe_{1.95}Sm_{0.05}O₄ 和 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄对甲基橙水溶液的降解 率分别为 77.57%、79.56%、64.11%、98.96%, 说 明加入 H₂O₂ 后, 各物质对甲基橙水溶液的降解活 性明显提高。对样品光催化降解 MO 动力学进行 研究,该催化降解过程符合一级反应,根据 $ln(C_0/C_t)$ 对时间 t 作图,结果分别如图 5(b, d)所示, 求得样品 Ag₂S、Ag₂S/Ag、CoFe_{1.95}Sm_{0.05}O₄和 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄光催化实验方案一和方案 二的表观反应速率常数分别 0.00794, 0.00801, 0.00249, 0.00905 min⁻¹,和 0.0182、0.0228, 0.0082 和 0.0676 min⁻¹, 由此可见方案二中 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄的降解 速率常数分别是 Ag₂S/Ag、Ag₂S 和 CoFe_{1.95}Sm_{0.05}O₄

2.6 光催化剂磁性能测定和稳定性

由图 6(a)可知,振动样品磁强计测定 CoFe_{1.95}Sm_{0.05}O₄和Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄的饱和 磁化强度(M_s)分别为 6.52 和 19.95 A·m²·kg⁻¹,显然 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄的饱和磁化强度更高,这 是由于Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄之间形成异质结后, 粒子间的偶极子相互作用,各向异性发生改变,从 而使饱和磁化强度升高^[34]。即使这样,Ag₂S/Ag/ CoFe_{1.95}Sm_{0.05}O₄复合物在外磁场作用下仍能被磁体 吸引,从多相反应体系中分离出来(见图 6(a)插图)。连续 5 次降解循环后,Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄对甲基橙的 降解保持在 95%以上(如图 6(b)所示);其光催化反 应前后的 XRD 图谱如图 6(c)所示,样品的衍射峰没 有发生明显变化,表明在光降解过程中 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄具有稳定晶体结构。

2.7 光催化活性的增强机理

采用 1,4-对苯醌(BQ)、乙二胺四乙酸二钠 (EDTA-2Na)和异丙醇(IPA)分别作为超氧自由基

(•O⁻₂)空穴(h⁺)和羟基自由基(•OH)的捕获剂,研究 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 光催化反应中主要活性物 种的作用机制,结果见图 7(a)。当加入 IPA 或 BQ 后, 甲基橙的降解率从 98.96%分别下降至 23.67%、 37.78%,说明•OH 和•O⁻₂对 MO 的降解起到关键作 用;而加入 EDTA 后, MO 降解效率略有降低,说明 h⁺没有参与 MO 的光降解^[35]。

了解材料的带隙及能带结构是探索光催化反应 机理的关键,根据莫特-肖特基曲线(M-S)分析, Ag_2S 的 M-S 曲线是正斜率, 说明 Ag_2S 是 n 型半导 体, 平带电势 V_{fd}=-0.57 eV; CoFe_{1.95}Sm_{0.05}O₄的肖特 基曲线是负斜率,说明 CoFe195Sm005O4 是 p 型半导 体, 平带电势 V_{fd}=1.31 eV。CoFe_{1 95}Sm_{0 05}O₄ 和 Ag₂S 的 M-S 曲线呈倒"V"形,见图 7(b),证实 CoFe195Sm005O4与Ag2S形成了 p-n 异质结。由 XPS 测定的相关数据经 Origin 软件处理可知: Ag₂S 和 CoFe1.95Sm0.05O4的价带(VB)分别为+1.20和+1.10 eV (vs SHE), 见图 7(c,d)。Ag₂S 和 CoFe_{1.95}Sm_{0.05}O₄的 禁带宽度(Eg)分别为 1.68 和 0.77 eV, 根据 Ag2S 和 CoFe_{1.95}Sm_{0.05}O₄导带电位的计算公式 $E_{CB} = E_{VB} - E_{g}$, 可得 Ag₂S 和 CoFe_{1.95}Sm_{0.05}O₄ 导带(CB)分别在-0.48 和+0.33 eV。由于 Ag₂S-CB 电位(-0.48 eV) 比 O₂/•O⁻₂(-0.046 eV (vs SHE))更负, 在 Ag₂S-CB 上的 电子可以将氧转化为超氧自由基^[36-37]。Ag₂S和 CoFe195Sm005O4的VB电位比H2O/•OH (2.7 eV vs NHE) 的氧化还原电位小,说明 Ag_2S 和CoFe_{1.95}Sm_{0.05}O₄的价 带(VB)上的 h⁺不能将 OH⁻和 H₂O 氧化生成•OH。

在奈奎斯特图中(图 7(e)), Ag_2S 的阻抗弧小于 CoFe_{1.95}Sm_{0.05}O₄的阻抗弧, $Ag_2S/Ag/CoFe_{1.95}Sm_{0.05}O_4$ 阻 抗弧最小,说明 Ag_2S 与适量 CoFe_{1.95}Sm_{0.05}O₄ 之间形成的异质结可以有效分离光生载流子,电荷 转移电阻较低可以归因于在 Z 型异质结界面上成功 构建了一种特殊的载流子传输机制^[38]。

图 6 样品的磁化曲线 (插图为外部磁场分离后的溶液的照片)(a),样品对甲基橙降解的循环性能曲线(b) 和循环试验前后 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 的 XRD 谱图(c)

图 7 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄光催化自由基捕获降解(a), 样品的莫特-肖特基曲线(b), Ag₂S, CoFe_{1.95}Sm_{0.05}O₄的 XPS 价带谱图 (c, d), 制备样品的 EIS 图谱(e) 和 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 光催化 MO 降解机理图(f) Fig. 7 Photocatalytic degradation of Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ by free radical capture (a), Mott-Schottky curves of samples (b), Valence-band XPS spectra of Ag₂S, CoFe_{1.95}Sm_{0.05}O₄ (c, d), EIS spectra of as-prepared samples (e), and the proposed photocatalytic degradation mechanism of MO over Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄(f)

基于上述讨论, Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 光催 化活性的增强机理如图 7(f)所示。当可见光辐照 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄时, Ag₂S 和 CoFe_{1.95}Sm_{0.05}O₄ 的价带(VB)中的电子可以被激发到它们的导带(CB) 上,同样金属银也能吸收可见光,局部的 Ag 纳米颗 粒(NPs)等离子体共振效应产生热电子,这些热电 子从 AgNPs 表面转移到 Ag₂S-CB 上,在 Ag₂S-CB 上电子可以将 O₂转化为•O₂⁻,而空穴仍保留在 Ag 纳米颗粒中。另一方面,CoFe_{1.95}Sm_{0.05}O₄导带中的 光生电子转移到 Ag 纳米粒子表面上并与其等离子 体共振诱导的空穴结合,而 CoFe_{1.95}Sm_{0.05}O₄ 导带中的 光生电子转移到 Ag 纳米粒子表面上并与其等离子 体共振诱导的空穴结合,而 CoFe_{1.95}Sm_{0.05}O₄ 中光 的 h⁺不能将 OH⁻和 H₂O 氧化生成•OH,但是在光催 化体系 pH 4 悬浮液中滴入少量 H₂O₂,由于 CoFe_{1.95}Sm_{0.05}O₄ 纳米粒子具有极高的表面电位能, 其表面上的 Fe^{^{III}与 H₂O₂经过两步化学反应产生•OH 自由基, •OH 自由基的氧化电势足以完全氧化甲基 橙,进行类芬顿反应,对甲基橙实现降解^[40]。}

3 结论

通过溶胶--凝胶法、原位沉积法和光还原法制备 了一种新型磁性 Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 复合材 料。实验结果表明, Ag₂S/Ag/CoFe_{1.95}Sm_{0.05}O₄ 具有最 高的光催化活性、磁性和良好的稳定降解能力, Ag₂S/Ag与CoFe_{1.95}Sm_{0.05}O₄的协同作用提高了光生 载流子分离效率。此外, 捕获实验结果证明•O₂⁻和 •OH⁻是主要的活性物质, 对甲基橙的光催化降解起 到关键性作用。本研究为进一步开发高效、窄带隙 和磁性的光催化剂提供了有效的解决思路。

参考文献:

- SOLAKIDOU M, GIANNAKAS A, GEORGIOU Y, et al. Efficient photocatalytic water-splitting performance by ternary CdS/Pt-N-TiO₂ and CdS/Pt-N, F-TiO₂: interplay between CdS photocorrosion and TiO₂-dopping. *Applied Catalysis B: Environmental*, 2019, **254**: 194–205.
- [2] CHI C C, QU P P, REN C N, et al. Preparation of SiO₂@Ag@ SiO₂@TiO₂ core-shell structure and its photocatalytic degradation. *Journal of Inorganic Materials*, 2022, **37(7)**: 750–756.
- [3] ZHANG X, ZHANG C, JIANG W J, et al. Synthesis, electronic structure and visible-light catalytic performance of quaternary BiMnVO₅. Journal of Inorganic Materials, 2022, 37(1): 58–64.
- [4] IKRAM S, ASHRAF F, ALZAID M, et al. Role of nature of rare earth ion dopants on structural, spectral, and magnetic properties in spinel ferrites. *Journal of Superconductivity and Novel Magnetism*, 2021, 34: 17451751.
- [5] CHEN S K, JIANG D C, ZENG G, et al. Dysprosium doped CoFe₂O₄ with enhanced magnetic property and photodegradation activity of methyl orange. *Materials Letters*, 2021, 284: 128966.
- [6] HAGIRI M, UCHIDA K, SASAKI M K, et al. Preparation and characterization of silver orthophosphate photocatalytic coating on glass substrate. *Scientific Reports*, 2021, 11(1): 13968.
- [7] MOHD T K, ABDULLAH A, MOHD S, et al. Effect of Ag₂S nanoparticles on optical, photophysical and electrical properties of P₃HT thin films. *Luminescence*, 2021, **36(3)**: 761–768.
- [8] JIANG W, WU Z M, YUE X N, et al. Photocatalytic performance of Ag₂S under irradiation with visible and near-infrared light and its mechanism of degradation. RSC Advances, 2015, 5(31): 24064–24071.
- [9] ZHAO W, DAI B L, ZHU F X, et al. A novel 3D plasmonic p-n heterojunction photocatalyst: Ag nanoparticles on flower-like p-Ag₂S/n-BiVO₄ and its excellent photocatalytic reduction and oxidation activities. *Applied Catalysis B: Environmental*, 2018, 229: 171–180.
- [10] PRADYASTI A, KIM D H, BIUTTY M N, et al. Ag-Ag₂S hybrid nanoplates with unique heterostructures: facile synthesis and photocatalytic application. *Journal of Alloys and Compounds*, 2020, 8926: 154191.
- [11] PENG C, WU Z J. Preparation of α-Fe₂O₃/ZnFe₂O₄ composite powder and its photocatalytic degradation of methylene blue. *Journal of Process Engineering*, 2016, **16(5)**: 882–888.
- [12] ZENG Q H, ZHU Y M, TIAN W, et al. Recyclable CoFe₂O₄-Ag₂O magnetic photocatalyst and its visible light-driven photocatalytic performance. *Research on Chemical Intermediates*, 2017, 43: 4487–4502.
- [13] SUN F J, ZENG Q H, TIAN W, et al. Magnetic MFe₂O₄-Ag₂O (M = Zn, Co, & Ni) composite photocatalysts and their application for dye wastewater treatment. *Journal of Environmental Chemical Engineering*, 2019, 7(2): 103011.
- [14] ŠUTKA A, DÖBELIN N, JOOST U, et al. Facile synthesis of magnetically separable CoFe₂O₄/Ag₂O/Ag₂CO₃ nanoheterostructures with high photocatalytic performance under visible light and enhanced stability against photodegradation. *Journal of Environm*ental Chemical Engineering, 2017, 5(4): 3455–3462.
- [15] GAN L, XU L J, QIAN K. Preparation of core-shell structured CoFe₂O₄ incorporated Ag₃PO₄ nanocomposites for photocatalytic degradation of organic dyes. *Materials and Design*, 2016, **109**: 354–360.
- [16] FARHADI S, SIADATNASAB F. CoFe₂O₄/CdS nanocomposite: Preparation, characterization, and application in sonocatalytic degradation of organic dye pollutants. *Chinese Journal of Catalysis*, 2016, **37(9)**: 1487–1495.
- [17] HE Y M, ZHANG L H, TENG B T, et al. New Application of Z-Scheme Ag₃PO₄/g-C₃N₄ composite in converting CO₂ to fuel. *Environmental Science and Technology*, 2015, **49(1):** 649–656.
- [18] LIU C, LIU F, HUANG F, et al. Preparation and photocatalytic properties of alga-based CDs-Cu-TiO₂ composite material. *Journal* of Inorganic Materials, 2021, 36 (11):1154–1162.
- [19] XU Y G, ZHOU T, HUANG S Q, et al. Preparation of magnetic Ag/AgCl/CoFe₂O₄ composites with high photocatalytic and antibacterial ability. RSC Advances, 2015, 5(52): 41475–41483.
- [20] LI J T, CUSHING S K, ZHENG P, et al. Solar hydrogen

generation by a CdS-Au-TiO₂ sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. *Journal of the American Chemical Society*, 2014, **136(23)**: 8438–8449.

- [21] WANG Z P, LIN Z P, SHEN S J, et al. Advances in designing heterojunction photocatalytic materials. *Chinese Journal of Catalysis*, 2021, 42(5): 710–730.
- [22] HOU Y H, HUANG Y L, HOU S J, et al. Structural, electronic and magnetic properties of RE³⁺-doping in CoFe₂O₄: a first-principles study. *Journal of Magnetism and Magnetic Materials*, 2017, **421**: 300–305.
- [23] HE D L, CHEN Y F, SITU Y, et al. Synthesis of ternary g-C₃N₄/Ag/y-FeOOH photocatalyst: an integrated heterogeneous Fenton-like system for effectively degradation of azo dye methyl orange under visible light. *Applied Surface Science*, 2017, 425: 862–872.
- [24] SHEN X F, YANG J Y, ZHENG T, et al. Plasmonic p-n heterojunction of Ag/Ag₂S/Ag₂MoO₄ with enhanced vis-NIR photocatalytic activity for purifying wastewater. Separation and Purification Technology, 2020, 251: 117347.
- [25] ZHAO W, GUO Y, WANG S M, et al. A novel ternary plasmonic photocatalyst: ultrathin g-C₃N₄ nanosheet hybrided by Ag/AgVO₃ nanoribbons with enhanced visible-light photocatalytic performance. *Applied Catalysis B: Environmental*, 2015, **165**: 335–343.
- [26] JING H X, GAO M X, WANG X M, et al. Preparation and absorption properties of rare earth Ce³⁺ doped CoFe₂O₄ nanoparticles. *Journal of Materials Research*, 2018, **32(6)**: 449–454.
- [27] LIU Y, CHEN J J, ZHANG J F, et al. Z-scheme BiVO₄/Ag/Ag₂S composites with enhanced photocatalytic efficiency under visible light. *RSC Advances*, 2020, **10**: 30245–30253.
- [28] LIU Y, ZHANG T H, LI S S, *et al.* Geometric and electronic modification of the active Fe³⁺ sites of α-Fe₂O₃ for highly efficient toluene combustion. *Journal of Hazardous Materials*, 2020, **398**: 123233.
- [29] HELENA BRUNCKOVA, MARIA KANUCHOVA, HRISTO KOLEV, et al. XPS characterization of SmNbO₄ and SmTaO₄ precursors prepared by Sol-Gel method. Applied Surface Science, 2019, 473: 1–5.
- [30] LI X Z, ZHANG Z S, YAO C, et al. Attapulgite-CeO₂/MOS₂ ternary nanocomposite for photocatalytic oxidative desulfurization. *Applied Surface Science*, 2016, **364:** 589–596.
- [31] SADOVNIKOV S I, GUSEV A I. Recent progress in nanostructured silver sulfide: from synthesis and nonstoichiometry to properties. *Journal of Materials Chemistry*, 2017, 5: 17617–17704.
- [32] BAI S, WANG L, LI Z, et al. Facet-engineered surface and interface design of photocatalytic materials. Advanced Science, 2017, 4: 1600216.
- [33] SUN G S, XU H, LI X M, et al. Fabrication and characterization of visible-light induced photocatalyst Gd₂O₃/Ag₃VO₄. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99: 471–484.
- [34] LIU C H, ZHOU Z D, YU X, et al. Preparation and characterization of Fe₃O₄/Ag composite magnetic nanoparticles. *Inorganic Materials*, 2008, 44(3): 291–295.
- [35] LI X, KANG B, DONG F, et al. Enhanced photocatalytic degradation and H₂/H₂O₂ production performance of S-p CN/ WO_{2.72} S-scheme heterojunction with appropriate surface oxygen vacancies. *Nano Energy*, 2021, **81**: 105671.
- [36] CHEN F F, WU C Y, WANG J N, et al. Highly efficient Z-scheme structured visible-light photocatalyst constructed by selective doping of Ag@AgBr and Co₃O₄ separately on {010} and {110} facets of BiVO₄: pre-separation channel and hole-sink effects. *Applied Catalysis B: Environmental*, 2019, **250**: 31–41.
- [37] DENG J M, XUE R T, HUANG C Y, et al. Preparation of Z-scheme Ag/AgBr/BiOBr composite photocatalyst for effective removal of organic pollutants. *Chemical Physics*, 2021, 548: 111228.
- [38] XIONG J, LI X B, HUANG J T, et al. CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H₂O₂ production. *Applied Catalysis* B: Environmental, 2020, 266: 118602.
- [39] TANG H, FU Y H, CHANG S F, et al. Construction of Ag₃PO₄/ Ag₂MoO₄Z-cheme heterogeneous photocatalyst for the remediation of organic pollutants. *Chinese Journal of Catalysis*, 2017, **38**: 337–347.
- [40] LI L, WANG X, LAN Y, et al. Synthesis, photocatalytic and electrocatalytic activities of wormlike GdFeO₃ nanoparticles by a glycol-assisted Sol-Gel process. *Industrial & Engineering Chemistry Research*, 2013, **52**: 9130–9136.